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Abstract. A statistical mechanical method is developed to probe the correlations between holes
in the structure of a model for a disordered system. The probe is a fluid of point-like charges
in varying concentration, which is allowed to permeate the disordered structure and to reach
equilibrium with it without modifying it. The correlations of the probing particles with the
‘quenched’ matrix and their mutual correlations are evaluated by means of integral equations
combining the Ornstein–Zernike relations for a partly quenched disordered system with the
hypernetted-chain closure. The correlations between successive shells of structural holes in the
matrix are displayed as the concentration of the probing charges is decreased, on account of
their mutual Coulomb repulsions. As the simplest example of its application, the method is used
to probe the holes in the structure of the one-component classical plasma under strong coupling.

1. Introduction

A recent development in the statistical mechanics of disordered systems has been the
evaluation of the equilibrium structure of a dense fluid inside a quenched disordered matrix.
It was first shown by Madden and Glandt [1], through an analysis of the cluster expansion
for a partly quenched system consisting of a classical mixture of annealed and quenched
particles, that the problem can be mapped onto the limiting case of a fully annealed
multicomponent system. Given and Stell [2, 3] subsequently developed a suitable version
of the replica method [4] to derive the full set of Ornstein–Zernike relations for a partly
quenched system. Their theory has also been re-formulated within a density-functional
frame [5]. Related numerical studies of the structure of fluids adsorbed in a quenched
microporous matrix have been carried out for a variety of model systems [6–9].

It is evident that the annealed particles in these models occupy the available holes in the
frozen structure of the host matrix. It is thus possible to probe for different types of hole
(such as tetrahedral-like against octahedral-like holes) inside a given disordered structure
by adopting suitable models for the interactions between the permeating fluid and the host
[10].

It is also evident that the pair distribution function of the permeating fluid carries
information on the spatial correlations between such structural holes. We present below a
method allowing these hole–hole correlations to be analysed in detail. The method uses a
fluid of point-like charges as a probe and varies its density to display the successive shells
of structural holes surrounding an average preferred structural hole.
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2. The method

The system with which we are dealing consists of two components, one of which has been
quenched into some disordered structure while the other is allowed to equilibrate with this
fixed structure. We adopt the convention of labelling the matrix of quenched particles with
the suffix i = 1 and the fluid of annealed particles with the suffixi = 2. We introduce
the partial number densitiesni , the direct correlation functionscij (r), the radial distribution
functionsgij (r) and the total correlation functionshij (r) = gij (r)− 1.

In the replica method [2, 3] the partly quenched two-component system is mapped
into a fully annealed three-component system by breakingh22(r) and c22(r) into the
sums of ‘blocked’ and ‘connected’ contributions,h22(r) = hb(r) + hc(r) and c22(r) =
cb(r) + cc(r). The blocked contributionhb(r) accounts for correlations between annealed
particles separated from each other by quenched particles, whereashc(r) accounts for
correlations between a pair of annealed particles which are transmitted through successive
layers of annealed particles. The following set of Ornstein–Zernike relations is obtained for
the Fourier transforms of the direct and total correlation functions:

h11(k) = c11(k)+ n1c11(k)h11(k) (1)

h12(k) = c12(k)+ n1c11(k)h12(k)+ n2c12(k)hc(k) (2)

h22(k) = c22(k)+ n1c12(k)h12(k)+ n2cc(k)h22(k)+ n2cb(k)hc(k) (3)

hc(k) = cc(k)+ n2cc(k)hc(k) (4)

h11(k) being the independently fixed pair structure of the disordered matrix. The symmetry
relationsh12(k) = h21(k) andc12(k) = c21(k) hold. The functioncb(k) is set equal to zero
in the set of Ornstein–Zernike relations proposed earlier by Madden and Glandt [1, 11].

In the calculations reported below we adopt the hypernetted-chain (HNC) closure [7] to
relate the radial distribution functions to pair potentials8ij (r),

gij (r) = exp
[−β8ij (r)+ hij (r)− cij (r)

]
(5)

hb(r) = exp
[
hb(r)− cb(r)

]− 1. (6)

The use of equation (5) for the casei = j = 1 implies that the quenched structure is that of
an internally equilibrated one-component fluid of particles interacting with each other via
the pair potential811(r). Of course, other types of construction for the pair structure of the
matrix are possible for input into equation (1).

As indicated in section 1 we propose to probe the distribution of structural holes in the
matrix by taking822(r) = e2/r. Namely, the annealed component permeating the matrix
is a classical plasma (OCP) of point-like charges neutralized by a uniform background at
densityn2 (for reviews of earlier studies of the OCP see Baus and Hansen [12] and Ichimaru
[13]). The pair potential812(r) may then be chosen so as to select a given type of hole in
the matrix preferentially.

3. The application to the one-component plasma

For illustrative purposes we shall make the simplest possible choice for the pair potentials
812(r) and811(r) in the calculations reported below; that is, we shall take812(r) = e2/r

and811(r) = e2/r. Namely, we shall be using an OCP at variable densityn2 to probe
the structural holes in an OCP at given densityn1. Such a partly quenched OCP is fully
described by the plasma coupling parameter0 = e2/(akBT ) and by the concentration
x2 = n2/n, with n = n1+ n2 anda = ( 3

4πn)
1/3.
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Figure 1. Pair distribution functionsg12(r) (peaking atr ' 1.5a) and g22(r) in the partly
quenched OCP at0 = 100 versus the reduced interparticle separationr/a, for the cases (a)
x2 = 0.5 and (b)x2 = 0.1. The full curves were obtained by numerical solution of equations (1)–
(6); the broken curves were obtained by settingcb(r) = 0 in equations (3) and (6).

We have solved equations (1)–(6) numerically for the structure of the partly quenched
OCP by the iteration method described by Høyeet al [14, 15] with a suitable extension of
the cut-off procedure proposed by Springeret al [16] and Ng [17] to handle the numerical
problems arising from the long-range nature of the Coulomb potential. Fourier transforms
were taken on a discrete mesh consisting of 2048 points spaced 0.01a apart.

Our numerical results for the pair distribution functionsg12(r) andg22(r) in the partly
quenched OCP are presented in figures 1–3. We anticipate that the results obtained by
setting cb(r) = 0 in equations (3) and (6) (shown by the broken curves in figure 1) are
very close to those obtained from the complete set of equations (full curves). As discussed
by Given and Stell [2], this approximation is consistent with the Percus–Yevick closure but
is in principle not correct when the HNC closure is adopted. In fact, we find that setting
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Figure 2. The pair distribution functiong22(r) in the partly quenched OCP at0 = 100 for
various values ofx2 approaching very high dilution of annealed particles.

Figure 3. The pair distribution functiong22(r) in the partly quenched OCP at0 = 10 for
various values ofx2 (x2 = 0.6, 0.5, 0.4, 0.3, 0.2 and 0.1 from left to right).

cb(r) = 0 is generally a very good approximation even in the case of the HNC closure.
Figure 1 reports the pair distribution functionsg12(r) and g22(r) at 0 = 100 for

two values of the concentration of annealed particles,x2 = 0.5 and 0.1. It should
be first recalled that, in the OCP at full equilibrium, we would by definition have
g11(r) = g12(r) = g22(r) = geq(r), say. The distributiong12(r) in figure 1 for the partly
quenched OCP shows a very sharp first peak—indeed, an appreciably sharper one than
the main peak ingeq(r). Furthermore,g12(r) is very similar in the two cases shown in
figures 1(a) and (b): evidently, even at very different concentrations, the annealed particles
occupy essentially the same set of holes inside the quenched structure, which is the same
in the two cases. From these sites they see a strongly peaked first coordination shell of
quenched particles located atr/a ∼= 1.5, followed by at least two further shells of quenched
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particles. The rather broad peaks in the second and third shells are located atr/a ∼= 3.5
and 5.3 forx2 = 0.5 and move inwards somewhat asx2 is reduced tox2 = 0.1.

Turning to the distributiong22(r) at x2 = 0.5 in figure 1(a), its superposition upon
g12(r) shows a state of overall order at short range from alternation of annealed and
quenched particles in space. At least three shells of annealed particles around a given
annealed particle can be discerned. These are located atr/a ∼= 2.0, 2.9 and 4.7. From
the interpretation given above forg12(r) we may interpret this result as showing that the
annealed particles are probing the correlations between holes in the quenched structure over
a range of at least three shells of holes around a given ‘average’ hole.

It is seen next fromg22(r) in figure 1(b) that, on reducing the concentration of annealed
particles tox2 = 0.1, the first shell of annealed particles around an annealed particle is
emptied. Correlations build up in the former second shell, whose peak is shifted outwards
somewhat (fromr/a ∼= 2.9 to r/a ∼= 3.1). The occupation of the former third shell is
also relatively increased, with some shift inwards of its peak (tor/a ∼= 4.4) and increased
overlap with the inner shell.

Figure 2 shows in detail how the second shell empties and the third shell is filled up on
further decreasing the concentration of annealed particles fromx2 = 0.1 to x2 = 0.05, still
at coupling parameter0 = 100. A full visualization of the distribution of third-neighbour
holes in the quenched structure is obtained near the lowest value ofx1 in this range.

Finally, figure 3 stresses that strong coupling between the probing charges is crucial
for the type of structural analysis that we have presented above. It reports the evolution of
g22(r) at 0 = 10 on decreasing the concentration of annealed particles fromx2 = 0.6 to
x2 = 0.1. The emptying of the first shell and even that of the second shell are still seen
to occur at this moderate value of the coupling strength, but the resolution that is being
achieved in the structural analysis is quite poor.

4. Concluding remarks

We have presented a method in which a strongly coupled classical plasma of point charges
is used to probe the spatial correlations which exist between holes inside a disordered
structure. Up to three shells of holes can be revealed and their occupation examined in
detail by varying the relative number of particles in the plasma.

We have illustrated the usefulness of the method by applying it to analyse the distribution
of structural holes in the strongly coupled fluid OCP at internal equilibrium. However, we
wish to emphasize again in closing that (i) the pair distribution function of the matrix
may be chosen at will, thus replacing equation (5) fori = j = 1 by the desired pair
structure for input into equations (1)–(4); and (ii) suitable modelling of the potential812(r)

of interaction between quenched and annealed particles will allow some selectivity in the
types of structural hole whose correlations one may wish to examine.
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